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This paper addresses the sensitivity problem of sensor locations for vibration control and
damage detection of thin-plate systems with parameter variation or noise. For vibration
control, the technique for robust determination of sensor locations is presented. Based on
the spectral condition number of the Hankel matrix, the optimal sensor locations (OSLs) can
be determined, and the e!ect of noise on the OSLs is investigated using the matrix
perturbation theory. For damage detection, the damage locations can be determined using
the damage index b derived from the curvature modes. The sensitivity analysis of sensor
locations on the detection result for systems with parameter variation is presented. Some
experiments are carried out to verify the e!ectiveness of the proposed method.
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1. INTRODUCTION

The problem of sensor locations is crucial for system identi"cation [1}4], active vibration
control [5}7] and damage detection [8, 9], which require accurate measurement of the
responses of the structure. Many methods, such as the minimal energy principle, mode
shape independent principle, degree of observability, Fisher information matrix, etc. have
been developed for the determination of sensor locations in many contributions [10}13].

In engineering practice, the measured data are always inaccurate because of the existence
of parameter variation or noise. In such cases, a question arises naturally, i.e., are the
conventional studies on the determination of sensor locations from these measured data still
valid, or under what conditions will the determined locations be insensitive to parameter
variation or noise during system identi"cation, vibration control or damage detection?

A survey of the literature shows that the sensitivity analysis of sensor locations for system
identi"cation has been investigated intensively [2, 14}16]. Kirkegaard and Brincker
determined the OSLs for parametric identi"cation of linear structural systems, and
discussed the in#uence of noise on these OSLs [2]. Kammer studied the e!ects of noise on
sensor placement for on-orbit modal identi"cation of large space structures [14]. Fadale
et al. suggested that erroneous estimates of the parameters can be ameliorated by placing
the sensors at points of maximum sensitivity [15].

However, very few papers have addressed the problems of the sensitivity analysis of
sensor locations for vibration control or damage detection. Ma et al. investigated the e!ects
of parameter variation on vibration control of beam structures, and established the
relationship between robust control and the determination of sensor locations [17]. As for
the robust determination of sensor locations for the vibration control of thin-plate systems,
0022-460X/01/090623#14 $35.00/0 ( 2001 Academic Press
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the e!ect of noise on the OSLs, and the sensitivity analysis of sensor locations to parameter
variation for damage detection, no constructive results have been reported.

The aim of this paper is to study these problems systematically. The structure of this
paper is organized as follows. In section 2, the condition for robust determination of sensor
location for the vibration control of thin-plate systems with parameter variation is derived,
the index for optimal assignment of locations is presented, and the method for analyzing the
in#uence of noise on the OSLs is given. The sensitivity analysis of sensor locations for
damage detection and the e!ect of parameter variation are discussed in section 3. In section
4, the experimental investigations are described and analyzed. Finally, conclusions are
drawn.

2. SENSITIVITY ANALYSIS OF SENSOR LOCATIONS FOR
VIBRATION CONTROL

2.1. FORMULATION OF THE PROBLEM

The di!erential equation of a thin plate subjected to control force F3Rs is given by
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are the transverse de#ection, the mass per unit area, the
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dimensions of the plate. Based on the mode superposition theory, the transverse de#ection
w(x, y, t) can be expressed as
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(x, y) are the ijth modal co-ordinate and shape function respectively.

Assuming that the outputs y(t) are a set of l displacement signals, with the transformation
Q(t)"Mg (t)T gR (t)TNr, the system can be written in the state-space form as
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Let f
ij

and u
ij

denote the damping ratio and the natural frequency of the ijth mode
respectively. Conventionally, the sensor locations are determined using the measure of
degree of observability based on the observability grammian P, which is the solution of the
Lyapunov equation [18, 19]
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to solve P in equation (5) determinatively. As a result, it will be di$cult to locate sensors at
the proper positions. For this reason, it is necessary to "nd a way to determine the sensor
locations robustly for the vibration control of thin-plate systems with parameter variation.

2.2. CONDITION FOR ROBUST DETERMINATION OF SENSOR LOCATIONS

For an uncertain thin plate with variable parameter feedback control
U(t)"K(r

o
)Q(t)[20] (see Figure 1), the Laplace transformation of the responses y(t) can be

expressed as
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element of matrix ( ) ) as R
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Figure 1. Block diagram of the VPFC system.
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The above analysis shows that:

f when the sensors are assigned at the locations determined according to equation (15), the
condition equation (7) holds. That is to say, the responses will be robust to parameter
variation for vibration control;

f from equation (15), the determination of sensor locations relates to function f
d, ij

(x, y) (or
mode shape /I

ij
(x, y)), and is independent of modal frequencies u

ij
and modal dampings

f
ij
;

f the satis"ed locations are near the points where the extreme amplitudes for the dominant
modes occur;

f the number of candidate locations is larger than the number of sensors to be placed, which
is always set as the number of modes to be monitored.

2.3. CRITERION FOR THE OSLs

Having identi"ed the sensor locations, the problem will be which criterion among the
combinations of all possible sensor locations to adopt in order to select an optimal set
e!ectively, such that the measured data will give desirable results for achieving a better
estimation of structural states. Our strategy is to monitor and compare the spectral
condition number (SCN) of the Hankel matrix. It is shown that there are OSLs, for which
the SCN is minimized. Constructing a Hankel matrix by overlapping length ¸ subsets of y
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and rl is chosen larger than the expected model order. De"ne the SCN as
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where the superscript &&#'' denotes pseudo-inverse. The criterion is to locate sensors at
those positions where i (H

k~1
) reaches its minimum, so as to achieve the best control e!ect.

2.4. EFFECT OF NOISE ON THE OSLs

An important factor that a!ects the sensor locations is the signal-to-noise ratio (SNR). It
is known that the precision of a measurement is limited by the SNR of the measured data.
For this reason, the problem of interest herein can now be stated as follows: when the
measured data used for SCN analysis are contaminated by noise, under what conditions
will the OSLs remain optimal?

Consider that the measured responses polluted by noise are given as

y8
k
"y

k
#t

k
, (18)

where t
k
"Mt

1,k
,2, t

l,k
NT is the vector of noise. Correspondingly, the perturbed Hankel

matrix H3
k~1

can be expressed as

H3
k~1

"H
k~1

#m
k~1

, (19)



628 Y. Y. LI AND L. H. YAM
m
k~1

is a matrix of t
k
,2 , t

k`r`s~1
. According to equation (17), i (H

k~1
) is replaced by

i (H3
k~1

)"EH3
k~1

E EH3 `
k~1

E . (20)

In order to reveal the relationship between i (H3
k~1

) and i (H
k~1

), the relationship
between EH3 `

k~1
E and EH`

k~1
E is investigated using the matrix perturbation theory in

advance.

Lemma [21]. ∀&H
k~1

, H3
k~1

3Cm]n, if rank (H3
k~1

)"rank(H
k~1

) and e"EH`
k~1

E
Em

k~1
E(1, then

EH3 `
k~1

!H`
k~1

E/EH`
k~1

E)
ke

(1!e)
, k"G

(1#J5)/2

J2

rank(H
i~1

)(min(lr, (¸#1)/2),

rank(H
i~1

)"min(lr, (¸#1)/2).

(21)

Equation (21) gives the upper perturbation bound of H3 `
k~1

. From equation (21), one
obtains

EH3 `
k~1

E)A1#
ke

(1!e)B EH`
k~1

E . (22)
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Equation (23) implies the connection between i (H
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3. SENSITIVITY ANALYSIS OF SENSOR LOCATIONS FOR DAMAGE DETECTION

Damage in thin-plate systems results in changes in their identi"ed modal parameters,
which have been used to assess the integrity of the structures extensively. Usually, the
vibration signatures, such as natural frequency, mode shape, etc. are the sensitive indices,
which can provide an indication of the extension of the cracked zones in structures [22}24].
In recent years, the techniques of utilizing mode shape data have been developed and used
extensively for damage detection and severity estimation of structures [25, 26]. As is known,
when the damage occurs, the curvature mode shapes of the systems will be changed [27, 28].
Based on this fact, the relative change in curvature mode is adopted as the index to locate
damage for thin-plate systems.



Figure 2. Schematic diagram of a thin-plate with damages.
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Denote the damage index bp
r
as (see Figure 2)
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It can be concluded that for the intact case, bp
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"0, while for the damaged case, bp
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). Since, at damaged areas, di!erences of the curvature mode shapes between

the intact and damaged structures are signi"cant, damage locations can be determined at
those positions where the peaks of bp

r
occur.

When a small variation of the system's parameters is taken into account, the following
expressions will be true after some algebraic manipulations. The analysis of the in#uence of
parameter variation on the damage detection results in
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Equation (35) shows the relationship between bI p
r
for the case with parameter variation

and bp
r
for the nominal case. It can be found that the peaks of bI p

r
will also appear at those

locations where the peaks of bp
r
appear, i.e., the damage locations detected for the nominal

case are insensitive to small variations in the system's parameters.

4. EXPERIMENTAL VERIFICATION

Two experiments were carried out and their results are analyzed in this section. The "rst
one is for the robust determination of sensor locations on vibration control and the
in#uence of noise on the OSLs. The second one is for the sensitivity analysis of sensor
locations on damage detection results for systems with parameter variation.
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4.1. FOR VIBRATION CONTROL

Since damping is a property that is di$cult to determine exactly, either experimentally or
theoretically, it will be regarded as the variational parameter and taken to evaluate the
robustness of the presented technique for determination of sensor location during vibration
control.

4.1.1. Experimental set-up and data acquisition

The schematic diagram of the experimental set-up for a four-edge clamped thin steel plate
with control is shown in Figure 3. The exciter (B&K 4809) was driven by the signal
generated by a signal analyzer (B&K 3557) through a power ampli"er (B&K 2706) to
provide an excitation. The corresponding vibration responses were sensed by the
accelerometers (B&K 4397) at di!erent locations. Consider that low-frequency modes exert
the dominant e!ects on systems' vibration control [29]; the highest frequency to be
analyzed was set at 200 Hz. According to the sampling theorem, the sampling frequency
should be more than twice the highest frequency of interest. The signals were therefore
digitized at a rate of 2 kHz by A/D converter. A total of 3 K samples of time history were
recorded for each sampling period by the signal analyzer. The data were then digitally
"ltered by an eighth order Butterworth "lter with a corner frequency of 100 Hz to remove
the high-frequency modes, and processed using the nominal realization parameters l"7,
r"5 and l"100, in which l depends on the available sensor numbers, rl is more than twice
the model order and ¸ should be larger than rl. It should be pointed out that the proper
selection of parameters (r, ¸) is important for obtaining desirable results and avoiding
a large calculation e!ort.

As is known, the accuracy of the experimental results is related to the quality of the
measured data. In order to improve the quality of the measured data:

f su$cient care is taken during the data sampling operation, so that aliasing e!ects can be
restricted to a high-frequency band far beyond the range of interest;

f &&Ensemble averaging'' is adopted during the measurement process to maximize SNR;
Figure 3. Schematic diagram of the experimental set-up for vibration of a thin plate.



Figure 4. Two combinations of sensor locations: ], sensor location (unit: mm).
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f the stinger with low transverse and high axial sti!ness is superior to the over-sti! stinger,
and extra "lter and ampli"er are used to minimize the e!ect of measurement noise.

4.1.2. Analysis of results

Figure 4 shows two di!erent combinations of sensor locations for vibration control.
Figure 4(a) represents the normal case, in which the sensor locations are assigned regularly,
while Figure 4(b) represents the optimal case, in which the sensor locations are assigned
with robustness (equation (15)). Since the control e!ect can be observed from the changes of
amplitude H of frequency response function (FRF) at each natural frequency, i.e., a small
amplitude H will be obtained when the sensors are placed at the OSLs, the performance

index J
j
"(1/l)S l

+

i/1

(H
i
(u

j
))2 is adopted for analysis, where j"1,2 , nu, nu is the number

of natural frequencies of interest. The FRFs of each measurement point were recorded by an
FFT analyzer. Figure 5 shows the experimental results of FRF and the index J

j
(l"7,

nu"9 for u)200). It can be seen that the J
j
value of case (b) (Figure 4(b)) is smaller than

that of case (a) (Figure 4(a)). This means that when the sensor locations are arranged
according to the method of robust determination of sensor locations presented in this paper,
better control e!ect can be achieved than with the conventional sensor location assignment

To investigate the in#uence of noise on the OSLs, the SCNs of di!erent combinations of
sensor locations for the noise-free case i (H

k~1
) and the noisy case i (H3

k~1
) are calculated

for comparison. In order to acquire the noisy data, random noise (white noise) was
generated by the analyzer and exerted on the tested structure, and no "lter was added to
eliminate the in#uence of noise during data sampling. In this example, rank(H3

k~1
)"rank

(H
k~1

)"32 and Em
k~1

E"0)012+0; thus, according to the proposition, the determined
OSLs in noise-free cases should be insensitive to the noise. Twenty-four di!erent
combinations of sensor locations were tested. The curves of the SCN for the noise-free and
noisy cases are plotted in Figure 6. It is clear that:

f the SCNs i (H3
k~1

) for the noisy case are larger than the SCNs i (H
k~1

) for the noise-free
case;

f for noise-free data, the curve reaches its minimal value ([i(H
k~1

)]
min

"110)3) at point
a (solid line), i.e., for that combination of sensors (case 11, the sensor locations are



Figure 5. The result for performance index J: *, optimal location* Figure 4(b); s, normal location* Figure 4(a).

Figure 6. SCN versus di!erent combinations of sensor locations: #, noisy data; *, noise-free data.
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indicated in Figure 4(b)), the OSLs will be obtained. For noisy data, a similar result can be
obtained at point b ([i (H3

k~1
)]

min
"122)7), i.e., the OSLs are the same for both noise-free

and noisy cases. This shows that the experimental results are consistent with the
theoretical analysis.

4.2. FOR DAMAGE DETECTION

To determine the damage location and analyze the sensitivity of sensor locations on the
detection results for systems with parameter variation, the damage indices bp

r
and bI p

r
need

to be computed. In this example, two thin steel plates with the same dimensions in length
and width, but di!erent thicknesses are taken to simulate the nominal system (h"0)6 mm)
and the system with parameter variation (h"0)7 mm). The schematic diagram of the tested
structure with damage is shown in Figure 7. There is a damaged area in element 8 for both
plates.



Figure 7. Tested structure for damage detection. Case 1: h"0)6; case 2: h"0)7 (unit: mm). ], sensor location;
, damaged area.

Figure 8. The results for damage indices bp
r
and bI p

r
(p

r
"1,2 , 25).
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According to equations (24) and (35), the computations of bp
r
and bI p

r
and related to the

curvature mode shapes of the nominal and variational systems, and the parameters mn and
p
r
. Here, mn"4 and p

r
"25 are selected. The data of excitation and responses at 16

measurement points for the intact and damaged structures in the following two cases are
sampled respectively: (1) with h"0)6 mm, (2) with h"0)7 mm, and then analyzed to give
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the "rst four mode shapes and their curvature modes using the modal analysis software and
mathematical processing. Figure 8 shows the results of bp

r
and bI p

r
. It can be seen that:

f for the nominal system (h"0)6 mm), bp
r
O0. bp

r
achieves its maximum at the damaged

area (element 8), i.e., b
8
"1)47; in contrast, at the undamaged area, bp

r
is at a low level.

This means that the damage index derived from curvature mode shapes is e!ective in
damage detection;

f for the system with parameter variation (h"0)7 mm), the location where the peak of
bI p

r
appears is the same as that for the nominal system, i.e., also at element 8 and bI

8
"1)62;

f the trend of curves for bp
r
and bI p

r
shows good correspondence for these two cases, i.e., the

detection result obtained from the nominal case is insensitive to the system's parameter
variation.

5. CONCLUSIONS

Sensitivity analysis of sensor locations is signi"cant for the vibration control and damage
detection of thin-plate systems. This paper investigates these problems systematically. In the
case of vibration control, the in#uence of parameter variation can be eliminated by the
robust determination of sensor locations so that the condition J

p
A1 is satis"ed. Among

these sensor locations, the OSLs are obtained by minimizing the SCN of Hankel matrix
H

k~1
, which is constructed from the measured data. Using the matrix perturbation theory,

the e!ect of noise on the determination of OSLs is discussed, and the sensitivity of the OSLs
to noise depends on the variance of noise and the ranks of H

k~1
and H3

k~1
. In the case of

damage detection, the index bp
r
for nominal cases (or bI p

r
for variational cases), derived from

the change of curvature mode shapes, is e!ective in detecting damage locations. The
sensitivity analysis of sensor locations on the detection results for the system with parameter
variation is discussed, and the relationship between bp

r
and bI p

r
is given. Experimental

studies show good agreement with the theoretical analysis.
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